Extra: Thinking and Literacy Activities

Teaching Resources for Years 7-12 children
Useful Teaching and Learning Strategies.

1. The Vocabulary Jumble.

This activity can be used as a topic starter. It helps to identify what children think they know.

Type or write clearly 20-30 key words from the overall topic onto an OHT or write them on a blackboard that can be hidden.

Put the most important/frequent words in one frame headed 'Level One Words'. The rest, which would contain some of the specialized words, are framed and headed 'Level Two words'.

Give students the purpose and instructions orally and in written form.

Purpose

This activity will help you to:

- Check that you know the sound, spelling and meaning of some key words for this topic

- Use the key word list to predict what the text or topic will be about
Student Instructions

1. **(While the Vocab Jumble OHT is on)**

Fold your arms and study the words on the OHT for TWO minutes. Try to remember all the words on List One so that you will be able to write them down later with correct spelling. Do the same for the Level Two words if you have time.

2. **(After 2 minutes the Vocab Jumble OHT will be turned off)**

Now write down as many words as you can, trying hard to spell them all correctly. Put a tick next to each of the words you are confident that you know the meaning and spelling of.

3. **(With Vocab Jumble OHT back on)**

Check all your words. Add any words that you missed and correct any spelling errors.

One step further:

A way of helping students grasp an understanding of word and meaning is to complete a definition table. Students first complete the 'my definition' part of the table below. They use words from the vocabulary jumble. They should be encouraged to have a guess if they aren’t really sure – there are no 'wrong answers' at this point as the purpose is to show their deepened understanding over the topic.

<table>
<thead>
<tr>
<th>WORD</th>
<th>MY DEFINITION</th>
<th>REVISED DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Clustering

This strategy can be a diagnostic activity at the start of a unit - you can suggest that they might need to make a cluster of words that no-one knows the meaning of. This will help your planning. It can also be a useful revision exercise at the end of a unit.

This is an easy one to prepare and takes 10 to 20 minutes in a lesson, depending on the number of words used and the student's familiarity with the task. Using recycled paper from the photocopier to make the cluster words means they can be thrown away after use if getting all the pieces back is a problem. Making laminated sets in different colours ensures they are always available for teachers in the department to use.

Rules

• Give each group of 3-5 students a set of words. Their task is to put the words into groups in a way that they can explain why they have put them together. Stress that there is no one correct way!

• There are blank cards to use as headings when the groups are sorted.

• If groups of students are making large clusters, then introduce the next rule - no cluster may have more than 6 words in it.

• When all groups have finished they can then "Walk and Gawk" - walk around each group in the classroom and look at what they have done (no talking!), or "Walk, Gawk and Talk" where one person from each group stays behind to explain their reasoning.

• Debrief with students - what terms were difficult to place? Why? What different ways of clustering the words could they think of that they did not use? What other words would they add to the selection?

The following page lists some of the words that can be useful for the first two strategies discussed
<table>
<thead>
<tr>
<th>Neap Tide</th>
<th>Isobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratus</td>
<td>Drought</td>
</tr>
<tr>
<td>Hail</td>
<td>Cirrus</td>
</tr>
<tr>
<td>Snow</td>
<td>Mist</td>
</tr>
<tr>
<td>Wind</td>
<td>Tsunami</td>
</tr>
<tr>
<td>Breeze</td>
<td>Wind Vane</td>
</tr>
<tr>
<td>Rain</td>
<td>Precipitation</td>
</tr>
<tr>
<td>Fog</td>
<td>Storm</td>
</tr>
<tr>
<td>Thermometer</td>
<td>Anemometer</td>
</tr>
<tr>
<td>Tornado</td>
<td>Flood</td>
</tr>
<tr>
<td>Spring Tides</td>
<td>Dry</td>
</tr>
<tr>
<td>Cyclone</td>
<td>Cold</td>
</tr>
<tr>
<td>Barometer</td>
<td>Wet</td>
</tr>
<tr>
<td>Gravity</td>
<td>Hot</td>
</tr>
<tr>
<td>Cold Front</td>
<td>High Pressure</td>
</tr>
<tr>
<td>Warm Front</td>
<td>Cumulus</td>
</tr>
<tr>
<td>Low Pressure</td>
<td>Evaporation</td>
</tr>
<tr>
<td>Spring</td>
<td>El Nino</td>
</tr>
<tr>
<td>Summer</td>
<td>La Nina</td>
</tr>
<tr>
<td>Condensation</td>
<td>Autumn</td>
</tr>
<tr>
<td>Winter</td>
<td>Stratus</td>
</tr>
<tr>
<td>Anti-cyclone</td>
<td>Nimbus</td>
</tr>
</tbody>
</table>
3. Picture Dictation

Why use this strategy

- It uses all the language modes
- Children have to listening carefully to the statements
- It takes what is said and transforms that information into visuals
- It orally puts the visuals back into words
- Children have to write captions to match the visuals
- Reading the captions
- Sequencing
- Children have to focus on key ideas

How to use this strategy

- Select a clearly sequenced text (for example, a list of instructions or the steps in a process or story)
- Divide it up into eight or ten basic stages, sentences etc.
- Ask the students to each draw up a page with numbered boxes (eight or ten) - one box for each statement. Space for a caption underneath.
- Number the boxes.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
• Read out each of the sections in turn, and ask the students to each draw their own simple visual for that section/statement. (Remind the students that a perfect picture is not required and they don’t have much time to draw.) They can record a single word in a frame if they wish to help memory – if they can’t draw what they need to.

• In pairs, the students take it in turns to translate each visual back to words.

• Individually, the students write a caption for each visual and then read their caption to their partner.
The Water Cycle – Picture Dictation Activity

STEP 1.
Heat from the sun dries up the liquid water that is on the earth’s surface, a lot of water from the oceans, because they are so large.
The liquid water is turned into an invisible gas, which we call water vapour.

STEP 2
The water vapour rises into the air. As it gets higher the water vapour cools, and changes back into tiny drops of liquid water, which start to crowd together. This is when they form a cloud.

STEP 3
The clouds are blown over the ocean by wind. When they reach land they are forced higher into the sky. The higher the clouds go the colder it gets.

STEP 4
As the cloud gets colder the tiny droplets of water join together and become so heavy that they cannot stay up there. They fall down to the ground as rain.

STEP 5
When the water reaches the ground, it soaks into the soil. A lot of the water ends up in streams, which flow into rivers which then flow into the oceans.

STEP 6
The sun warms up the water in the oceans again. It changes into water vapour and floats up to make a cloud.
4. **Sequencing**

Taking separate sentences and putting them into the correct order requires students to read for meaning. Any piece of text can be used in this way. It is also a useful strategy when giving instructions to carry out a practical. Until the group has put the steps in the correct order and had this checked, they cannot start the practical. The steps could be written on the board in the incorrect order or copied on to recycled paper.

Sequencing Instructions

- Turn over all your sentences so the whole group can see them.
- Put the sentences in order you think they were written -
 - Statement
 - Explanation
 - Example
 - Generalization
 - Elaboration
 - Example
- Check that the paragraph then makes sense
- Carry out any instructions in the sentences
Sequencing: Cyclones

- There are times when the air rising over the warm regions of ocean can form areas of extreme low pressure.

- This happens when the sea temperatures are above 29°C.

- The convection currents start spiralling around this low pressure centre, causing rotation.

- The winds spiral clockwise in towards the centre of the low pressure area picking up more moisture from the sea.

- At the centre, the air rises upwards, with the water vapour condensing to give high cloud formations and heavy rainfall.

- As long as the low pressure centre remains over the warm ocean, there will always be energy to continue feeding the system.

- The amount of water in the system builds up and wind and rain intensify and the system becomes a tropical cyclone.

- When the tropical cyclone has moved over land or cooler water, there is no energy to feed the system and the cyclone will die away.

- In the meantime the amount of energy and rain can do a great deal of damage.
Heating Land and Sea Breezes:

- During the day, the sun heats up the land and the sea.
- The land heats up faster.
- The air above the land heats up.
- The hot air rises.
- Cooler air from over the sea moves onto land to fill in the space.
- This is why onshore breezes occur during the day.
- The land cools down faster at night,
- The warm air over the sea rises.
- Cooler air from the land moves out to sea to fill the space.
- This is why offshore breezes occur at night.
5. Making Words

When students learn new words in science they often do not understand that the words can be used in different ways in different tenses. This is a good way to link language learning with science learning. The table can be used to help them make words and put them into sentences. It could be done as an oral or written activity.

Making Words

Each word below is a verb. By changing the ending, you can change the words into other parts of speech such as nouns and adjectives. Some endings do not match or new words have been formed. These have been done for you. Some words will need to lose a letter e.g. evaporate becomes evaporating.

<table>
<thead>
<tr>
<th>Word</th>
<th>-ing</th>
<th>-es</th>
<th>-ed</th>
<th>-tion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condense</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze</td>
<td></td>
<td></td>
<td>Froze</td>
<td></td>
</tr>
<tr>
<td>Precipitate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise</td>
<td></td>
<td>Rose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write a sentence with one word from each row. Make sure you use each ending at least once. E.g. The puddle disappeared because the water had evaporated.

The wind blows in from the sea during the day.
6. Word Assembly

Another useful strategy is to break words into syllables so that the students have to join them up to make the words. Put all the syllables on pieces of paper for each group to assemble.

e.g.

precipi tation
evapor ation
conden sation
tempera ture
thermo meter
anemom eter
baro meter
7. **Snappy Headings**

1. In pairs, read the following article carefully

2. Make up a "Snappy Heading for each paragraph - this may be witty or factual but must relate to the content of the paragraph"

3. Write 1 sentence that summarises each paragraph

4. or: Write 3 questions based on the article for another pair to answer.

The next two pages give a sample of the original reader and the same reader with the headings removed.
Weather Extremes: Cyclones

Water on the move.
The sun is the energy source that drives our weather. As the sun warms the atmosphere, air sitting above the ocean’s surface heats up and rises. The rising air picks up water vapour that has evaporated from the ocean’s surface. As the warm air rises it cools and water vapour condenses to form clouds. Cool air moves in to replace the warm air continuing the process.

Over the Pacific
Over the Pacific Ocean’s equatorial regions, heat energy from the sun creates large areas of warm, rising moist air. The southeast trade winds move over this warm ocean and pick up this water vapour. If you could see this region from space you would see large areas of cloud covering the Pacific.

This then creates large areas of low air pressure in this area. As the surface temperature rises, more moist air rises. In turn, more water vapour starts to condense to form droplets of liquid water in the clouds. The heat energy released when water vapour condenses, creates more convection type air currents in these clouds, pushing the air further upward. This causes huge cumulonimbus clouds to build up over the ocean.

Cyclones.
This system can go into over-drive. When the surface of the ocean reaches 29°C, large quantities of air start rising quite rapidly over the warm regions of ocean. This creates areas huge areas of moisture and areas of extreme low pressure. No-one can explain fully why this happens.

The convection currents cause this low pressure centre to rotate. This creates winds which spiral clockwise in towards the centre of the low pressure area picking up more moisture from the sea. At the centre, the air rises upwards. The amount of water in the system builds up giving to give high cloud formations, strong winds and heavy rainfall. The system becomes a tropical cyclone.

As long as these remain over the warm ocean, there will always be energy to continue feeding the system.

Where does Argo fit into this?
Argo floats take on an important role in helping to assess the likelihood of cyclones forming.

When an Argo float is dropped into the ocean, it sinks to depths of up to 2 kilometres. It then drifts with the currents for a period of 10 days, before it coming back to the surface. On its way back up it measures the temperature and salinity (salt content) of the water.

High rates of evaporation will mean water with a high salt content. Combine this with high ocean temperature and the float is measuring cyclone conditions.

Temperature and Salinity Profile from Tropical Waters

The information helps scientists link the weather we experience on the earth’s surface with what is happening in the oceans.

What will be the effect of Global Warming?
One of the effects of global warming will be to see the temperature of both oceans and atmosphere increase. This will mean more cloud cover trapping heat below, heating the air and ocean. Larger areas of the Pacific Ocean will become warmer and this will increase the chances of the sea surface temperature being at the figure of 29°C.

The consequence of this is greater extremes of weather with an increased likelihood of cyclones.
Weather Extremes:?

.........................?
The sun is the energy source that drives our weather. As the sun warms the atmosphere, air sitting above the ocean’s surface heats up and rises. The rising air picks up water vapour that has evaporated from the ocean’s surface. As the warm air rises it cools and water vapour condenses to form clouds. Cool air moves in to replace the warm air continuing the process.

........................?
Over the Pacific Ocean’s equatorial regions, heat energy from the sun creates large areas of warm, rising moist air. The southeast trade winds move over this warm ocean and pick up this water vapour. If you could see this region from space you would see large areas of cloud covering the Pacific.

This then creates large areas of low air pressure in this area. As the surface temperature rises, more moist air rises. In turn, more water vapour starts to condense to form droplets of liquid water in the clouds. The heat energy released when water vapour condenses, creates more convection type air currents in these clouds, pushing the air further upward. This causes huge cumulonimbus clouds to build up over the ocean.

.........................?
This system can go into over-drive. When the surface of the ocean reaches 29°C, large quantities of air start rising quite rapidly over the warm regions of ocean. This creates areas huge areas of moisture and areas of extreme low pressure. No-one can explain fully why this happens.

The convection currents cause this low pressure centre to rotate. This creates winds which spiral clockwise in towards the centre of the low pressure area picking up more moisture from the sea. At the centre, the air rises upwards. The amount of water in the system builds up giving to give high cloud formations, strong winds and heavy rainfall. The system becomes a tropical cyclone.

As long as these remain over the warm ocean, there will always be energy to continue feeding the system.

........................?
Argo floats take on an important role in helping to assess the likelihood of cyclones forming.

When an Argo float is dropped into the ocean, it sinks to depths of up to 2 kilometres. It then drifts with the currents for a period of 10 days, before it coming back to the surface. On its way back up it measures the temperature and salinity (salt content) of the water.

High rates of evaporation will mean water with a high salt content. Combine this with high ocean temperature and the float is measuring cyclone conditions.

Temperature and Salinity Profile from Tropical Waters

The information helps scientists link the weather we experience on the earth’s surface with what is happening in the oceans.

.........................?
One of the effects of global warming will be to see the temperature of both oceans and atmosphere increase. This will mean more cloud cover trapping heat below, heating the air and ocean. Larger areas of the Pacific Ocean will become warmer and this will increase the chances of the sea surface temperature being at the figure of 29°C.

The consequence of this is greater extremes of weather with an increased likelihood of cyclones.
8. Knowledge/ Learn Grids

This is a simple organizing strategy for students to organize their knowledge and what they have learnt from a reading passage. It allows opportunity for reflective learning.

Have students draw up a grid like the one below. It should have 12 spaces.

They then complete the grid after reading the passage.

The heading questions can be adapted. For instance the last column could be altered to: "3 Things I want to find out"
4X3 Information Processing Grid

<table>
<thead>
<tr>
<th>3 Most Important Ideas</th>
<th>3 Things I knew already</th>
<th>3 Questions about this text</th>
<th>3 Key words/new words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The K-W-L-H chart is another useful pre-reading activity. Students could complete the first two columns before reading, then fill in the rest after reading the article.
Student Instructions:

K-W-L-H Grid

Complete the first two columns of this grid now. You will have the chance to complete the following two columns later in the workshop.

Topic:

<table>
<thead>
<tr>
<th>What I Know about this topic</th>
<th>What I want or need to know about this topic</th>
<th>What I Learned about this topic</th>
<th>How I learned it</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. The Three Level Learning Guide

This helps students locate information in text, interpret what the text means and apply the information by taking it further into possible implications.

The three levels are:

- **Level 1: Literal.**

 Reading on the lines to find out what is actually written.

- **Level 2: Interpretive.**

 Reading between the lines to infer what the text means.

- **Level 3: Applied.**

 Reading beyond the lines to relate information to other ideas, knowledge or situations.

The students have to focus on the actual information, and think about it. From this they can draw conclusions. The next step is to use this as discussion. They have to give their views and ideas from what they have got from the reading.

When making a three level reading guide it is important that:

- The topic is appropriate, relevant, and important.
- The objectives of the exercise are known.
- Write the level 3 statements first. (3 statements will do)
- Write the level 1 statements next selecting the facts that match the objectives you have picked out. (6 to 8 statements)
- Write the level 2 statements last. These will help the students interpret the information. (4 to 5 statements)

It is helpful to make sure that some of the statements can be interpreted more than one way. This helps discussion.

When using the three level reading guide:

- Introduce the topic in the usual way.
- Ask students to read the article independently.
- Have the students work through the reading guide on their own.
- Have them share, discuss, and debate their responses in pairs or small groups.
- Help the students clarify ideas and misunderstandings.
- And most importantly, have students explain their answers and justify their ideas.
Three Level Reading Guide – Climate Change

Decide whether each statement is True (T) or False (F). Be prepared to explain why you have chosen your answer.

Level One – Literal (reading ‘on’ the lines – factual statements from the text).

____ 1. Five different systems interact to influence climate on earth
____ 2. The earth is warmed by solar radiation
____ 3. The earth absorbs all the solar energy that falls on it
____ 4. The oceans store heat energy and CO$_2$
____ 5. Icecaps absorb solar energy
____ 6. Plants absorb CO$_2$

Level Two – Interpretation (reading ‘between’ the lines – ideas that are suggested by the text).

____ 1. Changes to the cryosphere will affect the atmosphere
____ 2. Changes to the Biosphere won’t affect climate
____ 3. Clouds influence the amount of heat energy stored in the oceans
____ 4. If the icecaps disappear, less solar energy will be absorbed by the atmosphere
____ 5. A lot is known about climate systems.

Level Three – Application (reading ‘beyond’ the lines – linking ideas that are suggested and your own understanding of the topic).

____ 1. Reforestation programmes will be beneficial to the climate
____ 2. There will always be the same amount of heat energy on the earth – it is just stored in different places.
____ 3. Action by an individual in one country can have effects on the climate experienced by many people in another country.
Introducing Climate.

Climate is the interaction of the following systems on the planet;
• the atmosphere,
• the oceans,
• the cryospheres (made up of glaciers, sea ice, and the continental ice caps),
• the geosphere (earth’s solid surface)
• the biosphere (the living organisms on land and in water).

How each of these will interact with each other is very hard to predict, as the balance between them has taken centuries to reach. Changing that balance can cause problems. It could take a day or even centuries for a new balance to be reached again.

The sun’s rays (solar radiation) drive the climate system. The energy from the sun passes through earth’s atmosphere and warms the earth’s surface. It is re-emitted as heat energy. This heat energy is absorbed by the gases in the atmosphere, warming the part of the atmosphere we live in.

Changes in Earth’s Climate.

How the earth is warmed by solar radiation depends on the nature of Earth’s surface – whether the radiation falls on land, ocean, icecaps or vegetation. The different surfaces release different amounts of energy back into the atmosphere. This in turn affects the weather and ultimately the climate.

Oceans cover almost 70% of the earth. These are the great regulators of earth’s climate. Oceans absorb heat and carbon dioxide from the atmosphere. When ocean water sinks into the deep oceans it takes the heat energy and carbon dioxide with it. These remain trapped for long periods of time. This makes the oceans the great storehouse of the planet.

If you were in space looking back at Earth, the icecaps would stand out. This is because they reflect back a lot of incoming solar radiation. If the ice caps were to shrink or disappear, there would be changes in the amounts of solar energy absorbed by the atmosphere.

The part that we all live in is called the biosphere. All earth’s living organisms that live on both land and sea have an effect on the climate. All living things produce carbon dioxide. Living organisms containing chlorophyll (mostly plants), remove that carbon dioxide from the atmosphere. The interaction between biosphere and atmosphere is complex. But it does have an effect on climate.

The atmosphere has its role. The exact role of clouds is still unknown. Scientists are trying to find out;
• How much radiation passes through clouds?
• How much heat energy is trapped by clouds?
• How much heat energy is stored in different cloud systems?
• How is heat exchanged between the atmosphere and the other parts of earth’s surface?

How are we going to answer these questions?

According to the Intergovernmental Panel on Climate Change (IPCC) more research is needed to better understand these systems.
We need to:
• Improve the global observation technology.
• Investigate the climate of the past.
• Develop models that explain and predict our climate systems.
• Increase support for national and international research.
• Facilitate the international exchange of information.
On the next three pages there is a Reading Guide Template and two sample readers related to Climate Change

Three Level Reading Guide – Template
Decide whether each statement is True (T) or False (F). Be prepared to explain why you have chosen your answer.

Level One – Literal (reading 'on' the lines - factual statements from the text).

___ 1.

___ 2.

___ 3.

___ 4.

___ 5.

___ 6.

Level Two – Interpretation (reading 'between' the lines - ideas that are suggested by the text).

___ 1.

___ 2.

___ 3.

___ 4.

___ 5.

Level Three – Application (reading 'beyond' the lines - linking ideas that are suggested and your own understanding of the topic).

___ 1.

___ 2.

___ 3.
Introduction to Man-made Climate Change

Understanding the composition of gases that make up our atmosphere is important to understanding the reasons for climate change.

Our atmosphere is made up of predominately nitrogen and oxygen, with smaller quantities of water vapour, carbon dioxide and other gases. The cause of the current climate change comes through human activity, which has seen the release of greenhouse gases into the mix of gases in our atmosphere. Some of these gases, in particular carbon dioxide and methane are crucial in determining earth’s climate.

The concentrations of greenhouse gases are rising due to humans:

- Burning fossil fuels and removing forests (deforestation) which produce large quantities of carbon dioxide.
- Intensive agriculture and breaking down of biomass by bacteria producing methane.
- Other activities which produce gases such as nitrogen oxides, Chlorofluorohydrocarbons (CFC) and ozone.

In the last 200 years the quantities of these gases in our atmosphere have increased way beyond anything in earth’s past history.

Effects on the Pacific.

What maybe happening on one side of the planet is going to effect the whole planet. The Pacific Region will suffer the results of these greenhouse gases being put into the atmosphere.

Climate is a complex system of interactions between the atmosphere, the land, the oceans and biomass.

What is happening the Scientists cannot be sure of. But one thing is for certain global temperatures will rise. That means the temperature of the atmosphere we live in will increase and so will the oceans. Predictions indicate temperature rises of between 1°C to 7°C on the surface of the earth by the year 2030. This is faster than anything over the last 10,000 years.

It is easy to overstate the extent of climate change and say it is only a possibility, but that also undermines the risks to our existence, agriculture, land use and coastal communities. However climate change is fact. In the last 100 years average temperatures have risen from 0.3°C to 0.6°C across earth.

The Pacific region is going to get warmer, and still greenhouse gases are being emitted into our atmosphere.

The future.

The long-term build up of these gases is going to have long term consequences. This has a long term effect on our communities and way of life.

Climate change is going to bring about:

- A rise in sea levels.
- Changes in weather patterns.

The biggest risk we face is the failure to recognise what is happening and adapt. Global warming is happening.

Scientists are working to find ways to predict the changes taking place. The scientists may debate the extent of global warming. The facts are certain, more of the sun’s radiation is being trapped in our atmosphere, warming the planet and producing climate change.
Greenhouse Gases.

Introduction

Our atmosphere is made up of predominately nitrogen and oxygen, with smaller quantities of water vapour, carbon dioxide neon, argon, methane and a few others. Some of these gases are “greenhouse gases”. It is important to know which are the greenhouse gases. The build up of these gases is responsible for global warming and the problems associated with climate change - otherwise known as the greenhouse effect.

What do Greenhouse gases do?
The greenhouse gases absorb the heat radiation from the sun as it travels through the atmosphere. This causes the temperature in the atmosphere to increase. If the temperature in the atmosphere increases then so does the temperature of the land and the oceans as the heat energy is transferred. In turn the amount of water evaporating from the oceans will increase, creating an increase in cloud cover.

What causes an increase in Greenhouse Gases?

Greenhouse gases are increased in two ways:
• Increase in the sources of greenhouse gases through man-made activities - burning fossil fuels, intensive agriculture and breaking down of biomass by bacteria producing methane and activities which produce gases such as nitrogen oxides
• Decrease in the absorbers (sinks) of greenhouse gases such as through deforestation and ocean pollution.

Important Greenhouse Gases.

Water Vapour.
The amount of water vapour in the atmosphere depends on the balance between evaporation and condensation. The main issue is the formation of clouds. The increase in cloud cover helps to enhance global warming, as heat that radiates from the land and oceans can no longer escape.

Carbon Dioxide
This is the result of burning fuels such as wood, petrol, oil and coal. Carbon Dioxide stays in the atmosphere for decades, so the effects on global temperatures will remain with us for a long time. The only way to remove carbon dioxide is through photosynthesis from plants and plankton.

However natural processes associated with living and decay also release carbon dioxide.

Methane
The quantity of methane is increasing through:
• The intensification of agriculture and deforestation,
• Coal mining and the extraction of natural gas and oil,
• The melting of the vast ice tundras of the artic regions,
• The biodegrading of organic material.
Methane may not last long in the atmosphere but the damage it can do is far more serious.

Chlorofluorohydrocarbons (CFC’s)
These are man-made gases and were used in aerosol cans, refrigerators and foam products. These may not directly cause global warming, this has yet to be proved. CFC’s deplete an ozone gas layer in the stratosphere. This causes the growth of the “ozone hole.”

Ozone protects earth from the effects of ultra-violet radiation, which would kill everything on the earth’s surface if it was not blocked by the ozone layer. The Montreal Protocol has stopped the use of CFC’s which should enable the ozone layer to repair itself.

Other gases.

Other gases such as hydrocarbons, carbon monoxide and nitrous oxides are released into the atmosphere through human activities. The effect of these on our atmosphere and global warming is still largely unknown.

What does this mean?

This means that the temperature of the atmosphere we live in and the temperature of the oceans will increase. Predictions indicate temperature rises of between 1°C to 7°C on the surface of the earth by the year 2030. This is faster than at any time over the last 10,000 years. Climate change is going to bring about:
• A rise in sea levels.
• Changes in weather patterns.

Global warming is happening and the Pacific Region will suffer the results. The biggest risk we face is the failure to recognise what is happening and adapt.
10. Definitions.

This is a version of 'chinese whispers' on paper.

This activity will work with students in large or small groups.

Using a template like the one shown, the first student looks at the word.

They write their definition on the space provided and turn over the end of the piece of paper so the word is hidden but the their definition is shown.

This is passed on to the next person who has to guess the word from the student definition. They write their word in the space provided and turn over the piece of paper to hide the definition used.

This is passed onto the next student, who writes a definition for the word given, hides the word and passes it on.

Once everyone in the group has had a turn, the paper is opened up and the group compare their word and definitions from the start.
Definition Activity:

Students are in groups of 4.

- The teacher gives student 1 the word.
- Student 1 writes a definition and hides the word. The sheet is passed on to the next student who does not know what the word is.
- Student 2 writes out what they think the word is based on Student 1’s definition. They then hide the definition and pass the sheet onto Student 3.
- Student 3 now writes a definition based on Student’s 2 word. Student’s 2 word is hidden and passed onto Student 4.
- Student 4 writes what they think the word is based on Student 3’s definition.
- When Student 4 has finished the paper is opened up and their answer compared to the original word.
- The group discuss the outcome.
Template: Definition Activity

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
</tbody>
</table>
Sample Activity

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
</tbody>
</table>

Tides

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
</tbody>
</table>

Climate
<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
<tr>
<td>density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
<td>Definition</td>
<td>Word</td>
</tr>
<tr>
<td>precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>