Implementing global BGC-Argo: towards a sustained program synergistically interacting with other components of the global observation system.

Hervé Claustre¹, Ken Johnson², Emmanuel Boss³, Paulo Calil⁴, Fei Chai⁵, Giorgio Dall’Olmo⁶, Arne Körtzinger⁷, Tetsuichi Fujiki⁸, Satya Prakash⁹, Catherine Schmechtig¹⁰, Sandy Thomalla¹¹, Thomas W. Trull¹², Haili Wang¹³, Katja Fennel¹⁴, Susan Wijffels¹⁵, Tosio Suga¹⁶, Pierre-Yves Le Traon¹⁷, Sylvie Pouliquen¹⁸, Rik Wanninkhof¹⁹, Lynne Talley²⁰, Toste Tanhua²¹, Are Olsen²², Dorothee Bakker²², Andrew Watson²³, Cara Wilson²⁴, Marion Giehen²⁵, Mathieu Belbeoch²⁶.

¹ CNRS-Sorbonne Université, LOV, Villefranche-sur-mer, France; claustre@obs-vlfr.fr
² MBARI, Moss Landing, CA, USA; johnson@mbari.org
³ University of Maine, Orono, ME, USA; emanuel.boss@maine.edu
⁴ Universidade Federal do Rio Grande, Rio Grande-RS, Brazil; paulo.calil@furg.br
⁵ SIO, SOA, Hangzhou, China; fchai@sio.org.cn
⁶ Plymouth Marine Laboratory, Plymouth, UK; gjdai@pml.ac.uk
⁷ GEOMAR, Kiel, Germany; akoertszinger@geomar.de
⁸ JAMTSEC, Yokusuka, Japan; tfujiki@jamstec.go.jp
⁹ INCOIS, Hyderabad, India; satyap@incois.gov.in
¹⁰ CNRS-Sorbonne Université, OSU Ecce Terra, Paris, France; catherine.schmechtig@obs-vlfr.fr
¹¹ SOCCO, Cape Town, South Africa; sandy.thomalla@gmail.com
¹² CSIRO, Hobart, Tasmania, Australia; Tom.Trull@csiro.au
¹³ Xiamen University, Xiamen, China; hwang@xmu.edu.cn
¹⁴ Dalhousie University, Halifax, Nova Scotia, Canada; katja.fennel@dal.ca
¹⁵ Woods Hole Oceanographic Institution, Woods Hole, MA, USA; swijffels@whoi.edu
¹⁶ Tohoku University, Japan; sura@pol.tohoku.ac.jp
¹⁷ Mercator-Ocean, Toulouse & Ifremer, Brest, France; pierre-yves.letraon@mercator-ocean.fr
¹⁸ ERIC-Euro-Argo & Ifremer, Brest, France; Sylvie.Pouliquen@ifremer.fr
¹⁹ NOAA-AOML, Miami, FL, USA; rik.wanninkhof@noaa.gov
²⁰ Scripps Institution of Oceanography, La Jolla, CA, USA; Italley@ucsd.edu
²¹ University of Bergen, Norway; Are.Olsen@ubin.no
²² University of East Anglia, UK; D.Bakker@uea.ac.uk
²³ University of Exeter, UK; Andrew.Watson@exeter.ac.uk
²⁴ NOAA-NMFS-Pacific Grove, CA, USA; carawilson@noaa.gov
²⁵ LSCE/IPSL, Gif-sur-Yvette, France; marion.gehlen@lsce.ipsl.fr
²⁶ JCOMMOPS, Brest, France; helbeoch@jcommops.org

Developing in-depth scientific understanding of on-going changes in oceanic biogeochemical cycles and ecosystems requires broadening and intensifying global observations of key variables including Essential Ocean Variables. The BGC-Argo program aims at filling the gaps in the observation of these variables to support science research, management and exploration. The BGC-Argo science and implementation plan of 2016 recommends, at a 25 M$ annual cost, the operation of a 1000 float network measuring six variables (Chla, suspended particles, O₂, NO₃, pH, irradiance) in close synergy with the Argo program. Presently the ~200 floats network is supported through national projects and is entering the challenging phase of organizing its sustainability through long-term commitments of various agencies. Besides the 1000 float density target, this sustainability will rely on the setup of a program environment maximizing its outcomes by contributing to a more integrated global observation system with a large number of users. In this context, the keystone areas for BGC-Argo development are twofold. (1) Complete the establishment of an ambitious and evolving data management system that will combine: (a) real-time data delivery for operational purposes; (b) delayed-mode quality-controlled data delivery for science purposes; and (c) new products complying with end-user requirements. (2) Develop tighter and synergistic interactions with other observing and modeling programs for a cost-effective and truly integrated observation system. In particular coordination will be essential with (a) GO-SHIP for optimizing ship-time for float deployments and calibration; (b) IOCCP, GLDAP and SOCAT for a integrated set of biogeochemical products that have seasonal coverage and extend into the ocean interior; (c) IOCCG for strengthening the mutual use of in situ and satellite measurements for validation purposes and the development of merged 3D products; and (d) the GODAE modeling community.