Recent enhanced observations in the equatorial Pacific with Argo floats

F. Gasparin, D. Roemmich, J. Gilson, B. Cornuelle
Scripps Institution of Oceanography UCSD

AST-15
Brest, March 2015
IMPROVEMENTS OF THE EQUATORIAL COVERAGE

Before 2014 - reasonably good resolution of long zonal-scale seasonal and longer variability (Roemmich and Gilson, 2009) - Recommendations (OceanObs’09, endorsed by Argo ST) have been made to enhance float coverage near the equator for improved estimation of intraseasonal variability.

March 2014

deployments of 41 floats (Jan-Mar 2014)

S/V Investigator

(Pictures from Graham Wragg)
IMPROVEMENTS OF THE EQUATORIAL COVERAGE

Before 2014 - reasonably good resolution of long zonal-scale seasonal and longer variability (Roemmich and Gilson, 2009) - Recommendations (OceanObs’09, endorsed by Argo ST) have been made to enhance float coverage near the equator for improved estimation of intraseasonal variability.

March 2014

March 1998

March 2012

XBT, TAO, CTD, profilers (WOA13)

~objective of 3°x3°

the 41 floats deployed

deployments of 41 floats (Jan-Mar 2014)
NEW FLOAT GENERATION (SOLOII)

- Profile 0-2000 dbar anywhere in the world ocean (increased buoyancy control).
- Have increased battery life for > 300 cycles (6 years at 7-day cycles).
- Use Iridium 2-way communication for:
 - Short surface time (15 mins) to greatly reduce equatorial divergence, grounding, bio-fouling, and other hazards.
 - High vertical resolution (2 dbar full profile).
 - Improved surface layer sampling (1 dbar resolution, with pump cutoff at 1 dbar).
- Are lightweight (18 kg) for easier shipping and deployment, and increasingly robust.

Effects on the equatorial divergence

Note strong (10 cm/s) annual velocities at 1000 m, Annual Rossby reverse currents
COVARIANCE FUNCTION

==> Normalised covariance of Steric Height anomalies (0/2000) from the climatological cycle

Using 5 years of data
(Roemmich and Gilson 2009)

Using 10 years of data

- In the tropics, thermosteric component dominates, except in the western Pacific due to salinity stratification.
 → East/West differences

- More accurate covariance function than Roemmich and Gilson (2009)

→ More data are needed to have more accurate covariance function
The ESTIMATED ERROR (mean square error) in any optimal average is:

- proportional to the signal variance,

- dependent on the individual data points only in terms of the data spacing, not the individual data values themselves,

- the chosen spatial/time scales and signal-to-noise.

ASSESSMENT OF THE ESTIMATED ERRORS IN TEMPERATURE

100-m temperature Argo/TAO and errors at 140°W, 0°N, 100m

RMS T° Argo = 2.6°C
RMS T° TAO = 2.6°C
RMS diff = 0.8°C
RMS error = 0.9°C
EVOLUTION OF ERRORS FOR THERMOCLINE TEMPERATURE

→ Effect of the 41 floats deployed in 2014 on temperature errors

- Very low error along the equator
- Increasing of the accuracy thanks to the 2014 deployments
- Stronger errors for latitudes > 2-3°

→ Decrease of around 0.2°C thanks to the 41 deployed floats
SALINITY IN THE WESTERN PACIFIC

- Very low error along the equator
- Increasing of the accuracy thanks to the 2014 deployments
- Stronger errors for latitudes > 2-3°
SALINITY IN THE WESTERN PACIFIC

Representation of the SSS front

Impacts of errors on density

Effect of TAO/Argo error when Argo_subsampled close to Argo
Effect of sampling when TAO_subsampled close to TAO

Effect of TAO/Argo error when Argo_subsampled close to Argo
Effect of sampling when TAO_subsampled close to TAO

Impacts of errors on density
NEAR REAL TIME CAPACITY

Time longitude diagrams along the equator

average from 1.5°S to 1.5°N.
3. Representation of equatorial variability

ANNUAL CYCLE - ALTIMETRIC SSH / ARGO SH anomalies

What is the climatological cycle at the equator in the upper ocean?
- Quasi annual Rossby waves
- Negative anomalies first half
- Positive anomalies second half
- Downwelling Kelvin waves amplify positive anomalies in the 2nd half.
3. Representation of equatorial variability

ANNUAL CYCLE - ALTIMETRIC SSH / ARGO SH anomalies

- **What is the climatological cycle at the equator in the upper ocean?**
 - Quasi annual Rossby waves
 - Negative anomalies first half
 - Positive anomalies second half
 - Downwelling Kelvin waves amplify positive anomalies in the 2nd half.

- **What are the specific characteristics of the El Niño year?**
 - Strong amplification in the east
 - Inversion of the zonal gradient
 - Downwelling Kelvin waves in the 2nd half.
3. Representation of equatorial variability

ANNUAL CYCLE - ALTIMETRIC SSH / ARGO SH anomalies

- **What is the climatological cycle at the equator in the upper ocean?**
 - Quasi annual Rossby waves
 - Negative anomalies first half
 - Positive anomalies second half
 - Downwelling Kelvin waves amplify positive anomalies in the 2nd half.

- **What are the specific characteristics of the El Niño year?**
 - Strong amplification in the east
 - Inversion of the zonal gradient
 - Downwelling Kelvin waves in the 2nd half.

- **What did happen in 2014?**
 - Strong downwelling Kelvin waves at the beginning of the year
 - Similar situation in the first half than the 2nd half for El Niño

average from 1.5°S to 1.5°N.
SUMMARY

• More than 10 years of Argo data
• Strong improvements since 2006,
• 41 floats have been deployed along the equator from 100°W to 160°E, which is an enhancement, not a substitution

Technical impacts:
• Obvious decreasing temperature errors
• Salinity impacts in the western Pacific
• Errors off-equatorial regions (>2-3°)

Scientific impacts:
• Well-resolved intraseasonal variability (20-100 days)
• SSS front resolved at monthly time scales
• Off-equatorial representation seems to be insufficient

PERSPECTIVES

• Maintenance of the actual array
• Deployment of many floats in the eastern Pacific
• Divergence experiments
• Western Pacific